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Abstract. This paper continues the investigation of quasilength, of content

of local cohomology with respect to generators of the support ideal, and of ro-
bust algebras begun in joint work of Hochster and Huneke. We settle several

questions raised by Hochster and Huneke. In particular, we give a family of

examples of top local cohomology modules both in equal characteristic 0 and
in positive prime characteristic that are nonzero but have content 0. We use

the notion of a robust forcing algebra (the condition turns out to be strictly

stronger than the notion of a solid forcing algebra in, for example, equal char-
acteristic 0) to define a new closure operation on ideals. We prove that this

new notion of closure coincides with tight closure for ideals in complete local

domains of positive characteristic, which requires proving that forcing algebras
for instances of tight closure are robust, and study several related problems.

This gives, in effect, a new characterization of tight closure in complete local
domains of positive characteristic. As a byproduct, we also answer a question

of Lyubeznik in the negative.

1. Introduction

This paper continues the study of the notions of quasilength, content, and ro-
bustness initiated in [HH09] and resolves questions raised in that paper. We use
these ideas to give a new characterizaton of tight closure in equal characteristic
p > 0. The condition we use is similar to the characterization of tight closure in
[Hoc94] using solid closure, but the condition we impose on the forcing algebras
that arise is a priori stronger than being solid. The stronger condition, which is
that the forcing algebra be robust (defined briefly two paragraphs below, and with
more detail in Definition 5.9), nonetheless gives the usual notion of tight closure
for ideals in complete local domains.

There is great interest in extending the notion of tight closure to rings of mixed
characteristic. An example of Paul Roberts [Rob94] shows that solid closure is
not the right notion, in that, even in a regular local ring of dimension 3 in equal
characteristic 0, it is not true that every ideal is solidly closed. Roberts proves this
by showing that a certain forcing algebra is solid, when one hopes it should not be.
Specifically, let k be a field of characteristic 0, let A be the formal power series ring
K[[x1, x2, x3]], and let R = A[z1, z2, z3]/(g) where g = x2
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Roberts shows that H3
(x1,x2,x3)(R) 6= 0, so that R is a solid A-algebra: see §5 and

Definition 5.6 in particular. However, this algebra is not robust (cf. [HH09, Exam-
ple 3.11] and Definition 5.9). It remains an intriguing open question to determine

M.H. is partially supported by the National Science Foundation through grant DMS#1401384
and W.Z. is partially supported by National Science Foundation through grant DMS #1606414.

1



2 MELVIN HOCHSTER AND WENLIANG ZHANG

the content c of H3
(x1,x2,x3)(R) with respect to x1, x2, x3. The fact that g vanishes

in R implies at once that c ≤ 26/27, but so far as the authors know, c might be 0.
In §2 we review the needed background concerning quasilength, content, and

robust algebras. In §3 we study quasilength and content for modules over a local
ring with respect to a system of parameters. We give some surprising examples of
the failure of additivity on direct sums. However, over an equicharacteristic local
domain of Krull dimension d, it is true that the content of the d th local cohomology
module of a module of torsion-free rank r with respect to a system of parameters
is r. Theorem 3.7 gives a more general statement.

A sequence of elements x1, . . . , xd generating a proper ideal of a ring S is called
a Q-sequence if for every positive integer t, any finite filtration of S/(xt1, . . . , x

t
d)

with factors that are quotients of S/(x1, . . . , xd)S requires at least dt factors. An
algebra S over a local ring (R, m, K) of Krull dimension d to be robust if every
system of parameters x1, . . . , xd of R is Q-sequence in S. That S be robust implies
that Hd

m(S) 6= 0. The condition that Hd
m(S) 6= 0 is equivalent to the condition that

S be solid if R is complete (cf. [Hoc94, Corollary 2.4]).
In §4 we show that there are non-zero local cohomology modules whose content

is 0 in all characteristics, at the same time answering a question raised in [HH09,
Example 3.14]. Specifically, let S = A[x, y, u, v] be a polynomial ring in 4 variables
over a Noetherian commutative ring A, and let R = A[xu, yv, xv + yu]. Then
H3

(xu,yv,xv+yu)(S) 6= 0 and hence S is a solid R-algebra. In [HH09], it was asked

whether xu, yv, xv + yu is a Q-sequence. It is shown here that the content with
respect to xu, yv, xv + yu is 0 in all characteristics; if xu, yv, xv + yu were a
Q-sequence, the content would be 1.
§5 gives the definition of robust closure, and in §6 we prove that it agrees with

tight closure in complete local domains of characteristic p > 0. This is equivalent
to the following statement, which is one of our main results.

Theorem 1.1 (Theorem 6.1). Let R be a local ring of prime characteristic p > 0.
Suppose that I = (f1, . . . , fh) is an ideal of R, that g ∈ R, that g ∈ I∗, the tight
closure of I, and that

S = R[Z1, . . . , Zh]/(g −
h∑
i=1

fiZi)

(which is a generic forcing algebra for (R, (f1, . . . , fh), g): see Definition 5.1).
Then S is a robust R-algebra.

§7 discusses the relationship between being a Q-sequence and superheight. In
a Noetherian ring R, whether x1, . . . , xd is Q-sequence is related to whether the
height of (x1, . . . , xd)S becomes d in some Noetherian R-algebra S. In equal char-
acteristic, the latter condition is sufficient for x1, . . . , xd to be a Q-sequence. We
show, however, that it is not necessary. The examples are subtle, and the proofs
depend on difficult theorems. Our examples also answer negatively a question of
Gennady Lyubeznik (page 144 in [Lyu02]) on the vanishing of local cohomology
modules, cf. Proposition 7.7.
§8 describes some conjectures and questions that are related to the results of this

paper. In particular, it discusses several conjectures that, so far as we know, are
strictly stronger than the direct summand conjecture. While the direct summand
conjecture has now been proved by Y. André [And16b, And16a] and B. Bhatt
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[Bha16]: Bhatt uses part of André’s results but gives a simpler proof as well as a
proof of a derived version suggest by de Jong, it would be desirable to have other
proofs that do not use perfectoid geometry. Moreover, the results of André and
Bhatt do not solve the problem of giving a closure operation in mixed characteristic
that has properties analogous to tight closure.

2. Preliminaries

In this section we collect some basic facts about content of local cohomology
from [HH09]. We begin with the definition of quasilength.

Definition 2.1 (Quasilength). Let R be a commutative ring (not necessarily Noe-
therian), I a finitely generated ideal of R, and M an R-module.
M is defined to have finite I-quasilength if there is a finite filtration of M in

which the factors are cyclic modules killed by I.
The I-quasilength ofM , denoted by LI(M), is defined to be the minimum number

of factors in such a filtration. If M does not have finite I-quasilength, then its I-
quasilength is defined to be ∞.

One can check that M has finite I-quasilength if and only if M is finitely gen-
erated and is killed by a power of I, and LI(M) is bounded below by the least
number of generators of M . (cf. Propostion 1.1(a) of [HH09].)

Assume R is a Noetherian commutative ring and M a finitely generated R-
module. Let x1, . . . , xd be elements of R and I = (x1, . . . , xd). We will use t
to denote the d-tuple of positive integers (t1, . . . , td), t + k to denote the d-tuple
(t1 + k, . . . , td + k) and It to denote (xt11 , . . . , x

td
d ). One can define

(ItM)lim =

∞⋃
k=0

((It+kM) :M (x1 · · ·xd)k).

If we set k = (k1, . . . , kd) ∈ Nd, then one also has that

(ItM)lim =
⋃
k∈Nd

((It+kM) :M (xk11 · · ·x
kd
d )).

As we will see (ItM)lim is closely related to the local cohomology module Hd
I (M).

It is well-known that Hd
I (M) = lim−→t

M/ItM where in the direct system the map

M/ItM →M/It+kM is induced by multiplication by xk11 · · ·x
kd
d on the numerators.

It follows that (ItM)lim is the kernel of the canonical map M →M/ItM → Hd
I (M).

Therefore

Hd
I (M) = lim−→

t

M/(ItM)lim

in which all maps in the direct system are injective and each M/(ItM)lim in this

direct system can be viewed as a submodule of Hd
I (M).

Now we are in position to introduce the h-content of Hd
I (M) with respect to x

([HH09, page 9]).

Definition 2.2. With t ≥ s for s ∈ N meaning that every tj ≥ s, we define

hd
x
(M) = lim

s→∞
inf{
LI(M/(ItM)lim)

t1 · · · td
|t ≥ s}.
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The existence of hd
x
(M) is guaranteed by [HH09, Proposition 2.1].

hdx(M) = lim
s→∞

inf{
LI(M/(ItM))

t1 · · · td
|t ≥ s}.

If hdx(R) = 1, then according to [HH09, Theorem 3.8] one also has hd
x
(R) = 1; in

this case x is called a Q-sequence and Hd
I (R) is called robust for x.

By [HH09, Theorem 5.1], if R is a local ring and x1, . . . , xd is a system of pa-

rameters, then one has hd
x
(M) = hdx(M). This is the reason we will mainly work

with hdx(M) in the next section where we are only concerned with parameters.

3. Content of local cohomology with respect to parameters

Proposition 3.1. Let x1, . . . , xd be elements of a commutative ring R and let
0→ L→M → N → 0 be a short exact sequence of finite R-modules. Then

hdx(M) ≤ hdx(L) + hdx(N).

Proof. Let I = (x1, . . . , xd) and denote (xt1, . . . , x
t
d) by It for all integers t ≥ 1. It

is clear that one has the following short exact sequence

0→ L/L ∩ ItM →M/ItM → N/ItN → 0.

Hence LI(M/ItM) ≤ LI(L/L∩ ItM) +LI(N/ItN) by [HH09, Proposition 1.1(d)].
Since there is a natural surjection L/ItL� L/L∩ ItM , one has LI(L/L∩ ItM) ≤
LI(L/ItL) by [HH09, Proposition 1.1(d)]. Therefore,

LI(M/ItM) ≤ LI(L/ItL) + LI(N/ItN).

Dividing both sides by td and taking limit over t→∞ give us the desired inequality.
�

Proposition 3.2. Let R be a d-dimensional equicharacteristic local ring and let
x1, . . . , xd ∈ R be a system of parameters. Then

hdx(Rn) = n

for all integers n ≥ 1.

Proof. It follows directly from [HH09, Proposition 3.4] that the condition that

hdx(Rn) = n is equational, and hence reduction to characteristic p > 0 is appli-

cable. Therefore, it suffices to prove hdx(Rn) = n in characteristic p > 0.

Use induction on n. When n = 1, this is precisely [HH09, Theorem 4.7].
Assume that n ≥ 2. The short exact sequence 0 → R → Rn → Rn−1 → 0 and

Proposition 3.1 imply that hdx(Rn) ≤ hdx(R)+hdx(Rn−1). By induction, hdx(Rn−1) =

n− 1, and hence hdx(Rn) ≤ n.

Assume that hdx(Rn) < n. Let I = (x1, . . . , xd) and denote (xt1, . . . , x
t
d) by It for

all integers t ≥ 1. By [HH09, Theorem 2.4] and [HH09, Remark 3.7], there exist an
integer q = pe and a filtration

0 (M1 ( · · · (Mh = Rn/IqR
n



CONTENT OF LOCAL COHOMOLOGY, PARAMETER IDEALS, AND ROBUST ALGEBRAS 5

of Rn/IqR
n with Mj+1/Mj a homomorphic image of R/I and h < nqd. As a

consequence. one has

λ(Rn/IqR
n) ≤

h−1∑
j=0

λ(Mj+1/Mj) ≤ hλ(R/I).

Applying the e-th Frobenius functor to the above filtration, one has a filtration
(with a slight abuse of notation)

0 (M
[q]
1 ( · · · (M

[q]
h = Rn/Iq2R

n

of Rn/Iq2R
n with M

[q]
j+1/M

[q]
j a homomorphic image of R/Iq. Consequently, one

has the following filtration of Rn
2

/Iq2R
n2

0 ( F1 ( · · · ( Fh = Rn
2

/Iq2R
n2

where Fj is the direct sum of n copies of M
[q]
j . It is clear that Fj+1/Fj is a

homomorphic image of Rn/IqR
n and hence

λ(Rn
2

/Iq2R
n2

) ≤
h−1∑
j=0

λ(Fj+1/Fj) ≤ hλ(Rn/IqR
n) ≤ h2λ(R/I).

Similarly, one can prove that

nlλ(R/Iql) = λ(Rn
l

/IqlR
nl

) ≤ hlλ(R/I)

for all integers l ≥ 1. Dividing both sides by (nqd)l, one has

λ(R/Iql)

qld
≤ (

h

nqd
)lλ(R/I)

for all integers l ≥ 1. Since h < nqd, it follows that

lim
l→∞

λ(R/Iql)

qld
= 0

which is absurd because liml→∞
λ(R/I

ql
)

qld
is exactly e(Iq, R) (the multiplicity of R

with respect to Iq) which is positive.

Therefore, one has hdx(Rn) = n. �

Corollary 3.3. Let R be an equicharacteristic local ring and let x1, . . . , xs ∈ R be
part of a system of parameters of R. Then

hsx(Rn) = n

for all integers n ≥ 1.

Proof. Use induction on n.
When n = 1, this follows from [HH09, Proposition 1.2(a)] that hsx(R) ≤ 1. Let

P be a prime ideal minimal over I = (x1, . . . , xs) with ht(P ) = s. According to
[HH09, Proposition 2.5], we have hsx(R) ≥ hsx(RP ). But hsx(RP ) = 1 by Proposition

3.2 since x1, . . . , xs is a system of parameters of RP . Hence hsx(R) ≥ 1. Therefore,

hsx(R) = 1.

Assume that n ≥ 2 and hsx(Rn−1) = n − 1. It follows from Proposition 3.1 that

hsx(Rn) ≤ n. According to [HH09, Proposition 2.5], we have hsx(Rn) ≥ hsx(RnP ).
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But hsx(RnP ) = n by Proposition 3.2 since x1, . . . , xs is a system of parameters of

RP . Hence hsx(Rn) ≥ n. Therefore,

hsx(Rn) = n.

�

Corollary 3.4. Let R be a d-dimensional equicharacteristic local domain and let
x1, . . . , xd ∈ R be a system of parameters. Then

hdx(M) = rank(M)

for all finitely generated R-modules M .
In particular, under the same hypotheses, hdx is additive, i.e., given a short exact

sequence 0→ L→M → N → 0 of finitely generated R-modules, we have

hdx(M) = hdx(L) + hdx(N).

Proof. Let I = (x1, . . . , xd) and let T denote that torsion submodule of M . Then

dim(T ) < d and hence Hd
I (T ) = 0. By [HH09, Proposition 2.2], one has hdx(T ) = 0.

The short exact sequence 0 → T → M → M/T → 0 and Proposition 3.1 imply
that

hdx(M/T ) ≤ hdx(M) ≤ hdx(T ) + hdx(M/T ) = hdx(M/T ).

Hence, we may assume that M is torsion-free. Consequently, there is a short exact
sequence 0 → M → Rr → Rr/M → 0 where r = rank(M) and dim(Rr/M) < d

(hence hdx(Rr/M) = 0). Thus, one has

rank(M) = r = hdx(Rr) ≤ hdx(M) + hdx(Rr/M) = hdx(M).

Let g1, . . . , gr be elements in M whose images in (R\0)−1M form a basis, and
let M ′ =

∑r
j=1Rgj . Then one has a short exact sequence 0 → M ′ → M →

M/M ′ → 0. Since (R\0)−1(M/M ′) = 0, it follows that dim(M/M ′) < d and hence

hdx(M/M ′) = 0. By Proposition 3.1, one has

hdx(M) ≤ hdx(M ′) + hdx(M/M ′) = hdx(M ′).

It is clear that there is a surjection Rr → M ′ and hence hdx(M ′) ≤ hdx(Rr) = r.

Therefore, hdx(M) ≤ r. This finishes the proof. �

From Corollary 3.4, one may expect quasi-length to be additive under the same
hypotheses as well. However, quasi-length does not respect direct sum even when
R is a DVR, as shown in the following example.

Example 3.5. Let R = k[[x]], let I = (x2), let M = R/(x3) and let N = R/(x) =
k. Then it is easy to see that LI(N) = 1. Since M is not killed by I, one has
LI(M) ≥ 2; on the other hand, one has an I-filtration

0 (M1 = R · x2 (M2 = M,

hence LI(M) = 2.
We will prove that LI(M ⊕ N) = 2 6= 3 by constructing a filtration of M ⊕ N

with only 2 factors that are homomorphic images of R/I (a priori, LI(M ⊕N) ≥
max{LI(M),LI(N)} = 2).

Let L1 = R · (x, 1) and L2 = R · (x, 1) +R · (1, 1). It is easy to check that

(1) IL1 = 0;
(2) IL2 ⊂ L1 and L2/L1 is cyclic;
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(3) L2 = M ⊕N .

Therefore

0 ( L1 ( L2 = M ⊕N
is the desired filtration.

When R is not a domain, we can’t expect hdx to be additive.

Example 3.6. Let R = k[[u, v]]/(uv) where u and v are indeterminates over a field
k. Set x = u + v, then x is a system of parameter of R (dim(R) = 1). Since R is
reduced and has only two minimal prime ideals (u) and (v), we have a short exact
sequence

0→ R→ R/(u)⊕R/(v)→ R/(u, v)→ 0.

It is clear that h1
x(R/(u, v)) = 0. As a consequence of Proposition 3.1, we have

h1
x(R/(u)⊕R/(v)) ≤ h1

x(R) = 1. But, it is easy to check that

h1
x(R/(u)) = h1

x(R/(v)) = 1,

and hence

1 = h1
x(R/(u)⊕R/(v)) 6= h1

x(R/(u)) + h1
x(R/(v)) = 2.

This example suggests that hdx(R) should not exceed hdx(R/P ) for all minimal
prime ideals P . The precise formula is given in the following theorem.

Theorem 3.7. Let R be a d-dimensional equicharacteristic local ring and suppose
that x1, . . . , xd be a system of parameters of R. Let Mind(R) denote the set of
minimal prime ideals P of R with dim(R/P ) = d. Then for all finitely generated
R-modules M ,

hdx(M) = max{rankR/P (M/PM)|P ∈ Mind(R)}.

Proof. If dim(M) < d, then Hd
(x)(M) = 0 and hence hdx(M) = 0. It is clear

that rankR/P (M/PM) = 0 for all P ∈ Min(R). Thus, the theorem is true when
dim(M) < d.

Assume that dim(M) = d. Let N be the largest submodule of M with dimen-
sion smaller than d. The short exact sequence 0 → N → M → M/N → 0 and

Proposition 3.1 imply that hdx(M) = hdx(M/N). Hence, we may assume that M is

of pure dimension d. Since M is naturally an R/AnnR(M)-module, replacing R
by R/AnnR(M), we may assume that M is faithful (consequently R is also of pure
dimension d). Let P be a minimal prime ideal of R and let yi denote the image of

xi in R/P . Then by [HH09, Proposition 2.5], hdx(M) ≥ hdy(M/PM); the latter is

rankR/P (M/PM) by Corollary 3.4. Therefore,

hdx(M) ≥ max{rankR/P (M/PM)|P ∈ Mind(R)}.

Without loss of generality, we may assume that Mind(R) ⊂ Supp(M). For each
P ∈ Mind(R), we have a filtration

0 ( L(P )1 ( · · · ( L(P )rankR/P (M/PM) = MP

with L(P )j+1/L(P )j ∼= RP /PRP (= ((R/P )\{0})−1R/P ). Set

h = max{rankR/P (M/PM)|P ∈ Mind(R)}
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and extend the above filtration trivially (if necessary) as follows

0 ( L(P )1 ( · · · ( L(P )rankR/P (M/PM) = · · · = L(P )h = MP .

Let Lj = ⊕P∈Mind(R)L(P )j , then we have a filtration

(3.7.1) 0 ( L1 ( · · · ( Lh = ⊕P∈Mind(R)MP

with Lj+1/Lj a homomorphic image of ⊕P∈Mind(R)RP .

Let W = R\ ∪P∈Mind(R) P . It is clear that W−1R = ⊕P∈Mind(R)RP and

W−1M = ⊕P∈Mind(R)MP (since W−1R is artinain). Thus, the filtration (3.7.1)

gives us a filtration of W−1M with each factor a homomorphic image of W−1R,
which in turn gives us a filtration of M

0 (M1 ( · · · (Mh = M

such that there is a surjection W−1R→W−1(Mj+1/Mj) for each j.
Let g be an element of Mj+1/Mj whose image in W−1(Mj+1/Mj) generates

W−1(Mj+1/Mj). Then we have a short exact sequence 0 → Rg → Mj+1/Mj →
(Mj+1/Mj)/Rg → 0. Since W−1Rg = W−1(Mj+1/Mj), we have

W−1((Mj+1/Mj)/Rg) = 0.

Thus, dim((Mj+1/Mj)/Rg) < d and hence hdx((Mj+1/Mj)/Rg) = 0. It follows
from Proposition 3.1 that

hdx(Mj+1/Mj) ≤ hdx(Rg) + hdx((Mj+1/Mj)/Rg) = hdx(Rg) ≤ 1.

Furthermore, as a consequence of Proposition 3.1, we have

hdx(M) ≤
h−1∑
j=1

hdx(Mj+1/Mj) ≤ h = max{rankR/P (M/PM)|P ∈ Mind(R)}

which finishes the proof. �

Recall that, if M is a finitely generated module over a local ring R, then a system
of parameters of M is a sequence of d = dim(M) elements x1, . . . , xd in R such that
dim(M/(x1, . . . , xd)M) = 0.

Corollary 3.8. Let R be an equicharacteristic local ring and let M be a finite R-
module of dimension d. Let Mind(M) denote the set of prime ideals P minimal
over AnnR(M) with dim(R/P ) = dim(M). Then for any system of parameters
x1, . . . , xd of M ,

hdx(M) = max{rankR/P (M/PM)|P ∈ Min(M)}.

Proof. It is clear that M is naturally an R/AnnR(M)-module. By the remark on
page 11 in [HH09], we may replace R by R/AnnR(M) and assume that x1, . . . , xd
is also a system of parameters of R. Then Theorem 3.7 finishes the proof. �

4. A non-zero local cohomology module whose content is 0

Let R = A[x, y, u, v] where A is any reduced Noetherian commutative ring.
Let P = (x, y), Q = (u, v), and I = (x1, x2, x3) where x1 = xu, x2 = yv, and
x3 = xv + yu. Then one can check that J = P ∩ Q is the radical of I. It is left
open in [HH09, Example 3.14] whether x1, x2, x3 forms a Q-sequence when A = k
is a field. Our goal of this section is to prove that

h3

x
(R) = h3

x(R) = 0
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no matter what A is, and consequently that x is not a Q-sequence for any choice
of A. To the best of our knowledge, this is the first example of a nonzero local
cohomology module whose content is 0.

We begin with an easy comparison between the ideals It = (xt1, x
t
2, x

t
3) and

I ′t = (xt1, x
t
2, x

tvt + ytut).

Proposition 4.1. We have

(1) (xv)2, (yu)2 ∈ I
(2) I4t ⊆ I ′t
(3) I ′12t ⊆ It

Proof. (1). It is clear that we have

(xv)2 = x2
3 − yux3 − x1x2 ∈ I and (yu)2 = x2

3 − xvx3 − x1x2 ∈ I.
(2). It suffices to show that x4t

3 ∈ I ′t. It is easy to see that (xv)2t, (yu)2t ∈ I ′t.
Since x4t

3 is a linear combination of (xv)i(yu)4t−i in which at least either i ≥ 2t or
4t− i ≥ 2t, we have that x4t

3 ∈ I ′t.
(3). It suffices to show that (xv)12t + (yu)12t ∈ It. First we note that I3t ⊆ It

since I is generated by 3 elements. Consequently,

(xv)6t = ((xv)2)3t ∈ I3t ⊆ It.
And similarly, (yu)6t ∈ It. Now we have

(xv)12t + (yu)12t = (xv + yu)12t − (xv)6tα− (yu)6tβ,

for some α, β ∈ R. Hence, (xv)12t + (yu)12t ∈ It. �

We ought to remark that the subscripts 4t and 12t in Proposition 4.1 (2) and
(3), respectively, are not optimal.

Let T be a commutative Noetherian ring and let a = (a1, . . . , at) and b =
(b1, . . . , bt) be ideals of R. Let Hi(a) (respectively, Hi(b)) denote the (t − i)-th
homology of the Koszul complex associated to a1, . . . , at (respectively, to b1, . . . , bt).
We recall the following result from [SV86].

Lemma 4.2 (Lemma 1.5 in [SV86]). Let T, a, b, Hi(a), Hi(b) as above. If a ⊆ b,
then we have t+ 1 commutative diagrams:

Hi(b) //

��

Hi(a)

��
Hi

b(T ) // Hi
a(T )

As a consequence of this lemma, one can see that the map R/ a → Ht
a(R) is

canonical in the sense that, if (a1, . . . , at) = (αij)(b1, . . . , bt) for a matrix (αij) with

αij ∈ T (i.e. a ⊆ b) and
√
a =
√
b, then we have a commutative diagram

(4.2.1) R/ b
det(αij) //

##

R/ a

{{
Ht

a(R)

Theorem 4.3. Let R, I, J, P,Q, x as above. Then h3
x(R) = h3

x
(R) = 0.
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Proof. It is clear that lim−→t
R/It = H3

I (R) = H3
J(R), where the last equality holds

since J is the radical of I. We also note that, by the Mayer-Vietoris sequence

· · · → 0 = H3
P (R)⊕H3

Q(R)→ H3
J(R)→ H4

P+Q(R)→ H4
P (R)⊕H4

Q(R) = 0→ · · · ,

we have H3
J(R) = H4

(x,y,u,v)(R). Let m = (x, y, u, v) and mt = (xt, yt, ut, vt) for

t ∈ N.
Since every element of H4

m(R) is killed by mt for some suitable t, we know that
the image of R/(xu, yv, xv + yu) in H3

I (R) = H3
j (R) = H4

m(R) is killed by mc for
some c ∈ N.

Let Ft : R → R be the endomorphism that sends x (y, u, v, respectively) to xt

(yt, ut, vt, respectively) and is the identity on A. Applying Ft to the map

R/(xu, yv, xv + yu)→ H4
m(R),

we see that the image of R/I ′t in H4
mt

(R) = H4
m(R) is killed by mct.

Since we always have a surjection R/Pct → R/(Pct + Qct) = R/mct, we have
that

LJ(R/mct) ≤ LJ(R/Pct)).

Moreover we have that

LJ(R/Pct) ≤ LP (R/Pct) = c2t2

since J ⊂ P . Therefore, we have that

LJ(R/mct) ≤ c2t2,
and hence

LJ(Im(R/I ′t → H4
m(R))) ≤ c2t2.

Since I ′12t ⊆ It, there is a surjection Im(R/I ′12t → H4
m(R))→ Im(R/It → H4

m(R)).
Hence

LI(Im(R/It → H4
m(R))) ≤ LJ(Im(R/It → H4

m(R)))

≤ LJ(Im(R/I ′12t → H4
m(R)))

≤ c2(12t)2 = 144c2t2,

where the first inequality holds since I ⊂ J .
As discussed in §2, Im(R/It → H3

I (R) = H4
m(R)) is isomorphic to R/(It)

lim.
Therefore,

h3

x
(R) ≤ lim

t→∞

144c2t2

t3
= 0.

To finish the proof of our theorem, we will show that h3
x(R) is also 01, i.e., we will

prove that

lim
t→∞

inf{LI(R/It)
t3

} = 0.

For any s ≥ t, we have that

((xu)t+s, (yv)t+s, xt+svt+s + yt+sut+s)

= ((xu)t, (yv)t, xtvt + ytut)

(xu)s 0 −ysus−tvt
0 (yv)s −xsutvs−t
0 0 xsvs + ysus


1Note that h3

x
(R) = 0 already implies that x1, x2, x3 does not form a Q-sequence in R by

[HH09, Theorem 3.8].
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Hence by the commutative diagram (4.2.1), we have that Im(R/I ′t → H3
I (R)) is

Ht, the cyclic module generated by the image of (xu)s(yv)s(xsvs + ysus) in H3
I (R)

through R/I ′s+t → H3
I (R). For s � 0, one has that Ht is isomorphic to H ′s+t, the

submodule of R/I ′s+t generated by (xu)s(yv)s(xsvs + ysus). Therefore, we have

LJ(H ′s+t) = LJ(Ht) = LJ(Im(R/I ′t → H3
I (R))) ≤ c2t2.

Next we want to get a upper bound for the quasilength of

R/(I ′s+t, (xu)s(yv)s(xsvs + ysus)) ∼=
R/I ′s+t
H ′s+t

.

More precisely, we wish to show that

LI(R/(I ′s+t, (xu)s(yv)s(xsvs + ysus))) ≤ (t+ s)3 − t3.
To this end we will construct an I-filtration of R/(I ′s+t, (xu)s(yv)s(xsvs + ysus))
with (s+ t)3 − t3 factors. First we linearly order the elements in

S := {(xu)e1(yv)e2(xe3ve3 + ye3ue3)|0 ≤ e1, e2, e3 ≤ t+ s− 1}
as follows: we set

(xu)e1(yv)e2(xe3ve3 + ye3ue3) � (xu)e
′
1(yv)e

′
2(xe

′
3ve
′
3 + ye

′
3ue

′
3),

if e1 + e2 > e′1 + e′2, or e1 + e2 = e′1 + e′2 and e1 > e′1, or e1 = e′1 and e2 = e′2
and e3 ≥ e′3. Now we remove all elements (xu)e1(yv)e2(xe3ve3 + ye3ue3) with
e1, e2, e3 ≥ s from S. Hence according to our order, the remaining (t + s)3 − t3
elements can be listed as

(4.3.1) (xu)t+s−1(yv)t+s−1(xv + yu)s−1, (xu)t+s−1(yv)t+s−1(xv + yu)s−2, · · ·
Let Mh be the submodule of R/(I ′s+t, (xu)s(yv)s(xsvs + ysus)) generated by the
first h elements in (4.3.1). To see that the Mh give an I-filtration of

R/(I ′s+t, (xu)s(yv)s(xsvs + ysus)),

it suffices to see that IMh ⊆Mh−1. It is clear that (xu, yv)Mh ⊆Mh−1. It remains
to prove that (xv + yu)Mh ⊆Mh−1. Let

g(e1, e2, e3) = (xu)e1(yv)e2(xe3ve3 + ye3ue3).

Assume that g(e1, e2, e3) ∈Mh\Mh−1. If e3 = 0, then it is clear that

(xv + yu)g(e1, e2, 0) = g(e1, e2, 1) ∈Mh−1.

If 0 < e3 < s− 1, then

(xv + yu)g(e1, e2, e3)

= (xu)e1(yv)e2(xe3+1ve3+1 + ye3+1ue3+1) + (xu)e1(yv)e2(xvye3ue3 + yuxe3ve3)

= g(e1, e2, e3 + 1) + (xu)e1+1(yv)e2+1(ye3−1ue3−1 + xe3−1ve3−1) ∈Mh−1.

When e3 = s− 1, a similar calculation shows that

(xv + yu)g(e1, e2, s− 1) = g(e1, e2, s) + (xu)e1+1(yv)e2+1(ys−2us−2 + xs−2vs−2)

= g(e1, e2, s) + g(e1 + 1, e2 + 1, s− 2)

When e1, e2 ≥ s, we know that g(e1, e2, s) = 0 in R/(I ′s+t, (xu)s(yv)s(xsvs+ysus));
when one of e1 and e2 is less than s, we have that g(e1, e2, s) ∈ Mh−1. And it is
clear that g(e1 + 1, e2 + 1, s− 2) ∈Mh−1. Hence (xv + yu)g(e1, e2, s− 1) ∈Mh−1.
This finishes the proof that LI(R/(I ′s+t, (xu)s(yv)s(xsvs + ysus))) ≤ (t+ s)3 − t3.
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By the short exact sequence

0→ H ′s+t → R/I ′s+t → R/(I ′s+t, (xu)s(yv)s(xsvs + ysus))→ 0,

we have that

LI(R/I ′s+t) ≤ LI(H ′s+t)+LI(R/(I ′s+t, (xu)s(yv)s(xsvs+ysus))) ≤ c2t2+(s+t)3−t3.

Therefore, for n � 0, we have LI(R/I ′n) < n3. We may choose such an integer n
that is divisible by 12, i.e., n = 12n0. We can write LI(R/I ′n) = εn3 with 0 ≤ ε < 1.
After applying Fn repeatedly, we have that LI(R/I ′nl) ≤ εln3l. Now according to
Proposition 4.1(3), we have

LI(R/I12l−1nl
0
) ≤ LI(R/I ′12lnl

0
) = LI(R/I ′nl) ≤ εln3l

and hence

h3
x(R) ≤

LI(R/I12l−1nl
0
)

(12l−1nl0)3
≤ εln3l

(12l−1nl0)3
= 123εl

for all l ≥ 1. Therefore,

h3
x(R) = 0.

�

5. Robust Closure

Definition 5.1. We beginning by recalling the definitions of forcing algebras and
generic forcing algebras for a triple (M,N, u) ([Hoc94, 4.3]) where N ⊆ M are
finitely generated modules over a Noetherian ring R and u is an element of M . An
R-algebra S is called a forcing algebra for the triple (M,N, u) if the image 1 ⊗ u
of u in S ⊗R M is in Im(S ⊗R N → S ⊗R M). Let Rβ

A−→ Rα → M/N → 0
be a finite presentation of M/N , where A = (aij) is an α × β matrix over R.
Let r = (r1, . . . , rα) ∈ Rα represent ū ∈ Rα/ Im(A) ∼= M/N . Let Z1, . . . , Zβ be
indeterminates over R. Then

R[Z1, . . . , Zβ ]

(ri −
∑β
j=1 aijZj : 1 ≤ i ≤ α).

is called a generic forcing algebra for the triple (M,N, u) for the data A, r. It is clear
that the image 1⊗u of u in S⊗RM is contained in Im(S⊗RN → S⊗RM). Given
any other forcing algebra S′ for the triple (M,N, u), there is a ring homomorphism
S → S′; this justifies the word ‘generic.’

Remark 5.2. It is important to note that a forcing algebra (respectively, a generic
forcing algebra) for (M,N, u) is the same as a forcing algebra (respectively, a generic
forcing algebra) for (M/N, 0, u), where u is the image of u in M/N .

Note also that if S is a forcing algebra for (M,N, u) and S → T is an R-algebra
homomorphism, then T is also a forcing algebra for (M,N, u).

Furthermore, note that if N ⊆ N ′ ⊆ M ⊆ M ′ are finitely generated R-modules
and u ∈M , then a forcing algebra for (M,N, u) is a forcing algebra for (M ′, N ′, u),
since we have an R-linear map M/N → M ′/N ′ that sends the image of u in the
first module to the image of u in the second module. The case where M = M ′ and
the case where N = N ′ are of particular interest.

The following proposition ([Hoc94, Proposition 4.6]) will be useful to us.
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Proposition 5.3. If R is a Noetherian ring, N ⊆ M are finitely generated R-
modules, u ∈M , and S, T are two generic forcing algebras for (M,N, u) for possibly
different data, then there are finite sets of indeterminates Y, Z such that S[Y] =
T [Z] as R-algebras.

For any Noetherian ring R, following [Hoc94, 3.1], we refer to the R-algebra
obtained by completing R localized at a maximal ideal and then killing a minimal
prime as a complete local domain of R. Note that if R is local and p is a minimal

prime of R, then every minimal prime of p R̂ is a minimal prime of (0) in R̂ lying
over p. (If a /∈ p it is a nonzerodivisor on R/ p and, hence, of the flat (R/ p)-algebra

R̂/ p R̂. Thus q lies over p. Moreover, we can choose a ∈ R − p such that a pn = 0
for some integer n ≥ 1. When we localize at q, p therefore becomes nilpotent,

and q becomes nilpotent modulo p R̂.) It follows that the set of complete local
domains D of the local ring R is the same as the set of complete local domains

of the R/ p for p a minimal prime of R: the map R → R̂ → D factors uniquely

R → R̂ → R̂/ pR → R̂/ q = D where q is a minimal prime both of p R̂ and of (0)

in R̂.
Next we collect the definition and some basic facts of solid closure.

Definition 5.4 (Definition 1.1 in [Hoc94]). If R is a domain, we shall say that an
R-module M is solid if HomR(M,R) 6= 0. We shall say that an R-algebra S is solid
if it is solid as an R-module.

Remark 5.5. S is solid as an R-algebra if and only if there is an R-module map
θ : S → R such that θ(1) 6= 0. (If θ(s0) 6= 0, one may replace θ by θ′ where
θ′(s) := θ(s0s).) A module-finite extension S of a Noetherian domain R is always a
solid R-algebra ([Hoc94, Proposition 2.1(i)]). If (R,m) is a complete local domain
of Krull dimension d, then an R-module is solid if and only if Hd

m(M) 6= 0 ([Hoc94,
Corollary 2.4]).

Definition 5.6 (Definition 5.1 in [Hoc94]). Let R be a Noetherian ring, let N ⊆M
be finitely generated R-modules, and let u ∈M . If R is a complete local domain we
say that u is in the solid closure NF of N in M over R if there is a solid R-algebra
S such that the image 1⊗u of u in S⊗RM is in Im(S⊗RN → S⊗RM). In other
words, u ∈ NF if and only if (M,N, u) has a forcing algebra S that is solid as an
R-algebra. If there is as a solid forcing algebra, then the generic forcing algebra is
solid.

In the general case, we say that x is in the solid closure NF of N in M over R
is for every comlete local domain D of R, the image of 1⊗ x in D ⊗RM is in the
solid closure of Im(D⊗RN → B ⊗RM) in D⊗RM over B. In other words, every
complete local domain D of R has a solid D-algebra S such that the image of x in
S ⊗RM is in Im(S ⊗R N → S ⊗RM).

The following facts about solid closure will be used in the sequel:

(1) Let R be a Noetherian ring and I an ideal of R. Then IF ⊆ Ī. Moreover
if I is principal then IF = Ī ([Hoc94, Theorem 5.10]).

(2) If R is a Noetherian ring of positive characteristic and admits a completely
stable test element and N ⊆ M are finitely generated R-modules, then

N∗M = NF
M . In particular, this is true in positive characteristic if R is

reduced and essentially of finite type over an excellent semilocal ring, and,
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in particular, it is true in positive characteristic for every complete local
domain ([Hoc94, Theorem 8.6]).

Recall the following definition from [Bre03].

Definition 5.7 ([Bre03]). Let (A,m) be a d-dimensional Noetherian commutative
local ring. A paraclass in Hd

m(A) is the cohomology class [ 1
x1...xd

] ∈ Hd
m(A) where

x1, . . . , xd is a system of parameters of A and we think of Hd
m(A) as the quotient

of Ax1···xd
by
∑d
i=1Afi where fi =

∏
j 6=i xj .

Let R be an A-algebra. R is called a parasolid A-algebra if the image of each
non-zero paraclass c ∈ Hd

m(A) in Hd
mR(R) does not vanish.

More generally, let A be a Noetherian commutative ring and let R be an A-
algebra. R is called a parasolid A-algebra if Rm is parasolid over Am for each
maximal ideal m of A.

Remark 5.8. It is clear that a parasolid algebra over a complete local domain
is always solid from the local cohomology characterization of being solid given in
Remark 5.5. Note also that if A→ R is split or even pure as a map of A-modules,
then R is parasolid over A: the condition of being split or pure is preserved by
base change to a complete local domain of A. But when (A,m) is a complete local
domain the map of local cohomology Hd

m(A)→ Hd
m(R) is injective.

Definition 5.9. Let R be a complete local domain. An R-algebra S is called robust
if the image of every system of parameters for R in S forms a Q-sequence in S.

In general, for any Noetherian ring R, an R-algebra S is called robust if D⊗R A
is a robust D-algebra for every complete local domain D of R.

Note that a robust algebra S over a complete local domain (R, m) of dimension
d is solid, since even the fact that one system of parameters x = x1, . . . , xd is
a Q-sequence on S implies that Hd

(x)(S) = Hd
m(S) 6= 0. We make the following

conjecture:

Conjecture 5.10. Every system of parameters for every local ring is a Q-sequence.
Hence, every Noetherian ring is robust as an algebra over itself.

The issue for Noetherian rings of Krull dimension at most d reduces to the case
of complete local domains of Krull dimension at most d, where it is equivalent to
ask whether every system of parameters is a Q-sequence. One may pass to the
normalization of the complete local domain. The results of Hochster and Huneke
[HH09] show that this conjecture is true in equal characteristic ([HH09, Theorem
4.1]) and in dimension at most 2 (the normalized complete local domain is Cohen-
Macaulay and one may apply [HH09, Proposition 1.2(c)]. Hence, by the results of
Hochster and Huneke we have:

Theorem 5.11. Let R be a Noetherian ring such that Rred contains a field or such
that R is of Krull dimension at most 2. Then R is robust.

The difficult result on the vanishing of content in §4 enables us to show that
parasolid algebras are not, in general, robust. In the example given in the result
below, A→ R is actually split as a map of A-modules.

Theorem 5.12. Let R = C[[x, y, u, v]] and A = C[[xu, yv, xv + yu]]. Then R is a
parasolid A-algebra, in fact A → R splits as a map of A-modules, but R is not a
robust A-algebra.
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Proof. Let B = C[[xu, xv, yu, yv]]. Then it is easy to see that B is Cohen-Macaulay
and xu, yv, xv+ yu is a system of parameters of B. Therefore B is a free A-module
and hence the natural inclusion A ↪→ B splits (over A). On the other hand, B is
the invariant subring of R under the C∗-action given by:

c ◦ x = cx, c ◦ y = cy, c ◦ u =
1

c
u, c ◦ v =

1

c
v

for each c ∈ C∗. And hence B ↪→ R splits (over B). Therefore A ↪→ R splits (over
A), and consequently R is a parasolid A-algebra by Remark 5.8.

However, from §4 we know that R is not a robust A-algebra. �

Definition 5.13. Let (R,m) be a complete local domain and N ⊆ M finitely
generated R-modules. Let N� (or N�

M if M is not clear from context) denote
the submodule of M generated by N and all elements u ∈ M such that a generic
forcing S for the triple (M,N, u) is a robust R-algebra. (It is equivalent to say that
there exists a forcing algebra for (M,N, u) that is robust.) We refer to N� as the

immediate robust closure of N in M . Let N�j

be defined recursively by N�0

= N

and N�j+1

= (N�j

)�. The robust closure of N in M is defined to be
⋃
j N

�j

,

denoted by N or N M . Note that since the sequence N�j

is clearly nondecreasing

as j increases and M is Noetherian, we have that N = N�j

for all j � 0.
In general, for any Noetherian ring R and finitely generated R-modules N ⊆M ,

we say an element u ∈ M is in the robust closure of N in M if 1 ⊗ u is contained
in Im(R′ ⊗N → D ⊗RM) D⊗RM for every complete local domain D of R.

Remark 5.14. In Definition 5.13, if we use a generic forcing algebra T for (M,N, u)
for possibly different data, then whether the generic forcing algebra obtained is
robust is not affected. To see this, note that by Proposition 5.3, it suffices to prove
that a system of parameters for R forms a Q-sequence in a generic forcing algebra
S for (M,N, u) if and only if it forms a Q-sequence in the polynomial ring S[Y]
over S. This is clear because we have S-algebra homomorphisms S → S[Y] → S
whose composition is the identity, and these are also R-algebra homomorphisms.

Moreover, in defining N� (and, hence, in defining all the N�j

), we may take S
to be any forcing algebra rather than a generic forcing algebra. For then we may
choose a generic forcing algebra S0 such that R→ S factors R→ S0 → S, and the
fact that S is robust implies that S0 is robust.

There are technical difficulties in working with robust closure. One is that we do
not know that Noetherian rings are robust as algebras over themselves, which was
discussed above. Her are two others. We do not know whether the tensor product
of two robust algebras over a complete local domain R is robust, nor whether, if S
is robust over R and R→ R′ is a local homomorphism of complete local domains,
R′ ⊗R S is robust over R′. But the notion is well-behaved in many other ways.

Let R be a complete local domain. We will see later that in positive characteristic
both robust closure and solid closure agree with tight closure.

If regular sequences of length 2 are Q-sequences (this is an open in the non-
Noetherian case for every length > 1), then this is also true for latent regular
sequences of length 2. Assuming this, then according to [Hoc94, Theorem 12.5], in
characteristic 0, when dim(R) = 2, robust closure coincides with solid closure. We
do not know whether this is true.
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In dimension three robust closure can be strictly smaller than solid closure in
equal characteristic 0. For example, in R = C[[x1, x2, x3]], one has that x2

1x
2
2x

2
3 ∈

(x3
1, x

3
2, x

3
3)F, using the result of [Rob94]. See also the second paragraph of §1.

However, every ideal of R is its own robust closure by Theorem 5.24 below.

Proposition 5.15. If R is Noetherian and S is a robust R-algebra, then the con-
traction of IS to R is contained in I for all ideals I of R.

Proof. Let u ∈ R have image in IS. Let D be a complete local domain of R. Then
D ⊗R S is robust, and the image of u is in I(D ⊗R S), which the image of IS.
Hence, u is in I . �

Proposition 5.16. If R is Noetherian and Rred contains a field, then every module-
finite extension S of R is robust. Hence, IS∩R ⊆ I for every ideal of R. Therefore,
if R is reduced and contains a field, I+ ⊆ I .

Proof. If m is maximal in R and R1 denote the completion of Rm, then S1 = R1⊗S
is a module-finite extension of R1. Let P be a minimal prime of R1 and let Q be a
prime of S1 lying over P1. Let D = R/P1. We need to show that D⊗S1 = S1/PS1

is robust over D. But S1/PS1 maps to S/Q, and R/P = D → S/Q is injective and
module-finite. Hence, any system of parameters for R/P is a system of parameters
for the equicharacteristic complete local domain S/Q, and the result follows from
Theorem 5.11. The final statement is immediate from the fact that every integral
extension of R is a directed union of module-finite extensions. �

Remark 5.17. There are results for finitely generated modules corresponding to
both Proposition 5.15 and Proposition 5.16. If N ⊆ M and we have a homomor-
phism R → S, we work with the inverse image in M of Im(S ⊗R N → S ⊗R M)
under the map M → S ⊗R M (sending u 7→ 1 ⊗ u). That is, we think of the
contracted expansion of N as the set of u ∈ M such that 1 ⊗ u is in the image of
S ⊗R N in S ⊗RM .

Remark 5.18. Proposition 5.16 holds for module-finite extensions of Noetherian
rings that are robust as algebras over themselves. Thus, if Conjecture 5.10 is true,
Proposition 5.16 will hold for all Noetherian rings. Coupled with Theorem 5.24
below, this give a new proof of the direct summand conjecture.

Proposition 5.19. Let R be a Noetherian ring, and let N ⊆ M and N ′ ⊆ M ′ be
Noetherian R-modules. Then:

(a) N ⊆ N M .
(b) If u ∈ M , then u ∈ N M iff u ∈ 0 M/N , where v denotes the image of

v ∈M in M/N .
(c) If u ∈ M , u′ ∈ M ′, and there is an R-linear map M/N → M/′/N ′ such

that u 7→ u′, then if u ∈ N M we have that u′ ∈ N ′ M ′ . In particular, if
N ⊆ N ′ ⊆M then N M ⊆ N ′ M , and if N ⊆M ⊆M ′ then N M ⊆ N M ′ .

(d) (N M ) M = N M .
(e) If N ′ ⊆M , then(N ∩N ′) M ⊆ N M ∩N ′ M .
(f) (N +N ′) M ⊆ (N M +N ′ M ) M .
(g) If Ni ⊆Mi are Noetherian, 1 ≤ i ≤ n, N =

⊕
iNi, and M =

⊕
iMi, then

N M may be identified in the obvious way with
⊕

iNi Mi .

Proof. (a). This is clear from the definition.
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(b) The submodules N ′/N of M/N are in a bijective correspondence with the
submodules N ′ of M with N ⊆ N ′, and, by Remark 5.2 for each element v ∈M , a
forcing algebra for (M,N ′, v) is the same as a forcing algebra for (M/N,N ′/N, v).
Again by Remark 5.2, this remains true when we make a base change to a complete
local domain R′ of R, replacing M by R′⊗RM and N by the image of R′⊗RN in
R′⊗RM . We use the notation R, M , N for what we obtain after the base change.

It follows that 0�j

M/N = (N�j

M )/N , and the result follows.
(c) It suffices to prove the result when N = 0 and N ′ = 0 (we may replace M,M ′

by M/N, M ′/N ′). The result then says that a linear map M →M ′ takes 0 M into
0 M ′ . It suffices to prove the result after base change to a complete local domain
of R, and so we may assume that R is a complete local domain. We then need only

show that the image 0�j

M maps into 0�j

M ′ for all j. We use induction on j. Again, we

may replace M and M ′ by quotients, M/0�j

M and M ′/0�j

M ′ , respectively. Thus,
we need only consider the case j = 1 to do the inductive step. But this follows from
the fact that by the third paragraph of Remark 5.2, a forcing algebra for (M, 0, u)
is a forcing algebra for (M ′, 0, u′). The corollary statements in the second sentence
are obvious.

(d) Let u ∈ (N M ) M . We must show that u ∈ N M . It suffices to consider the
issue after base change to a complete local domain of R. After the base change, the
image of N is in the robust closure of the image of N . Therefore, using part (c), it
suffices to show that (N M ) M = N M in the case of a complete local domain R.

But then N M = N�i

M for i sufficiently large, and so (N M ) M = (N�i

M )�j

M =

N�i+j

M = N M , as required.
(e) and (f) are immediate from the second statement in part (c) (note that

N +N ′ ⊆ N M +N ′ M ).
(g) Since Ni Mi

⊆ N M is clear from part (c), it suffices to show that if u =
u1 ⊕ · · · ⊕ un ∈ N M then ui ∈ Ni Mi

for each i. Identify M with
∏
iMi. The

needed fact also follows from the part (c), along with the fact that the product
projection M →Mi takes u to ui and N onto Ni. �

Proposition 5.20. Let R be a Noetherian ring and let N ⊆M be finitely generated
R-modules. Let S be a Noetherian R-algebra such that every maximal ideal M of S
lies over a maximal ideal m of R in such a way that that the contraction of every

minimal prime q of ŜM under θ : R̂m → ŜM is a minimal prime p of R̂m in such

a way that R̂m/ p → ŜM/ q is an isomorphsim. If u ∈ N M , then 1 ⊗ u ∈ S ⊗M
is in

(
Im(S ⊗R N → S ⊗RM)

)
S⊗RM .

In particular, the conclusion holds when S is the localization of R at one or at
finitely many maximal ideals, the completion of Rm for a maximal ideal m of R, or
when S is the quotient of R by a minimal prime.

Proof. The hypothesis at once implies that every complete local domain of S is a
complete local domain of R, which can be checked instead for the map Rm → SM

or for the induced map of completions. This immediately yields the first conclusion.
We next consider the statement of the second paragraph. In the case of local-

ization at a finite set of maximal ideals, each localization SM is isomorphic to the

corresponding Rm, from which the result is obvious. If we consider R → R̂m, the

induced map of completions is the identity on R̂m. Therefore we need only consider
the case where S = R/P for a minimal prime P of R. Then M = m /P for a
maximal ideal of m of R, and we can reduce to studying the local case, i.e., we may
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assume that (R, m) is local and S = R/P for P minimal. Then Ŝ ∼= R̂/P R̂, and it

suffices to observe that every minimal prime q of PR̂ is a minimal prime of R̂, by
the discussion in the paragraph following Propopsition 5.3. �

Proposition 5.21. Let R be a Noetherian ring, let N denote the radical of the
ideal (0) of R, i.e., the nilradical of R, let Rred = R/N, and let N ⊆M be finitely
generated R-modules.

(a) The robust closure of the ideal (0) is the nilradical
√

(0) of R. The robust

closure 0 M of 0 in M is contained
√

(0)M .

(b) Let Rred = R/
√

(0). Then N M is the inverse image of the robust closure

of Im(Rred ⊗R N → Rred ⊗RM) in Rred ⊗RM = M/
√

(0)M .
(c) An element u ∈M is in N M if and only if for every minimal prime p of R,

the image of u in M/ pM is in the robust closure of Im(N/ pN →M/ pM)
in M/ pM , computed over R/ p.

Proof. (a) First note that N maps to 0 in every complete local domain of R, which
shows that N ⊆ (0) . If r ∈ R is not nilpotent choose a minimal prime p of R that
does not contain r and a maximal ideal m of R that contains p. Then r /∈ pRm

and so r is not nilpotent in Rm. It follows that the image of r is not nilpotent
in the completion of Rm, and so it is not in a minimal prime of the completion.
It therefore suffices to show that (0) is solidly closed in a complete local domain
R. This is clear because every nonzero element x in a complete local domain is
a parameter or a unit: the generic forcing algebra for (R, (0), x) is a polynomial
ring over R/xR, and R/xR is obviously not a robust R-algebra). Parts (b) and (c)
are clear from Proposition 5.20 and the fact that every map R→ D, where D is a
complete local domain of R, factors Rred → D (respectively, R/ p → D) for some
minimal prime p of R in such a way that D is a complete local domain of Rred

(respectively, of R/ p). �

Proposition 5.22. For all ideals I of a Noetherian ring R, I ⊆ IF ⊆ I.

Proof. The fact that IF ⊆ I is [Hoc94, Theorem 5.10]. Thus, we only need to
show that if u ∈ I then u ∈ IF, and it suffices to show this after base change to

a complete local domain of R, where the issue becomes showing that I�j ⊆ IF.
By induction on j this reduces to the case where j = 1, where it follows from the
fact that a robust algebra over a complete local domain is solid: see the comment
following Definition 5.9. �

Proposition 5.23. Let R be a Noetherian ring. If I is principal and every module-
finite extension of a complete local domain D of R is a robust D-algebra, then
I = I. In particular, if Rred contains a field or R has dimension at most 2 and I
is principal, then I = I.

Theorem 5.24. Let R be a regular Noetherian ring. Then for any two finitely
generated R-modules N ⊆M , N M = N .

Proof. Suppose u ∈M is such that u ∈ N M\N . Localize at a maximal ideal m of
R such that u /∈ Nm and complete. Thus, we may assume without loss of generality
that R is a complete regular local ring.

Choose N ′ ⊇ N maximal in M with respect to not containing u. Then by
Proposition 5.19(d) we still have u ∈ N ′ M . But then the image of u is in every
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submodule of M/N ′. We may replace M, N , and u by M/N ′, 0 and the image of
u in M/N ′. Hence, we may assume that M has finite length, N = 0, and that
u generates the socle. Let x1, . . . , xd be a regular system of parameters for R.
Then the injective hull of R/m over R is the directed union of modules of the form
R/It where I = (xt1, . . . , x

t
d)R, and M is contained in R/It for t � 0. Moreover,

up to a unit factor, u must be the socle generator (x1 · · ·xd)t−1 for R/It. It will
therefore suffice to show that 0 = 0 R/It , and for this it will suffice to show that

0� = 0. This will follow if we can show that there is no forcing algebra that is
robust for the triple (R/It, 0, v) where v is a nonzero element of R/It. Note that
any such forcing algebra must also be a forcing algebra for (R/It, 0, u), since u is a
multiple of v in R/It. It therefore suffices to show that the generic forcing algebra

S = R[Z1, . . . , Zd]/(x
t−1
1 · · ·xt−1

d −
∑d
i=1 Zix

t
i) is not robust over R. But this is

clear, S/(xt1, · · · , xtd) will have a filtration using ideals generated by monomials in
the xi of length td − 1, and so x1, . . . , xd is not a Q-sequence in S. �

Proposition 5.25. Let R→ S be a homomorphism of Noetherian. Suppose that

(†) MaxSpec(S)→ MaxSpec(R) is surjective and that for every minimal prime
p of R and maximal ideal m of R with p ⊆ m, ht(mS/ pS) ≥ht(m / p).

Let N ⊆ M be finitely generated R-modules. If u ∈ M is such that 1⊗ u is in the
robust closure of the image of S ⊗R N in S ⊗R N , then u ∈ N M . In particular,
for an ideal I ⊆ R, the contraction to R of (IS) , calculated over S, is contained
in I .

The hypothesis (†) holds if S is faithfully flat over R, or if R is universally
catenary and S is an integral extension of R, or if R→ S is a local homomorphism,
R is equidimensional, and the image of one system of parameters of R is a system
of parameters in S.

Proof. It will suffice to show that for every complete local domain D of R there is
a complete local domain D′ of S such that R → S → D′ factors R → D → D′

and every system of parameters for D is part of a system of parameters for D′. It
follows that every robust D′-algebra is a robust D-algebra and we may apply Lemm
Assume that I = (g1, . . . , gn). Since ϕ(u) ∈ (IS) , each system of parameters of

S is a Q-sequence in S[Z1,...,Zn]
(ϕ(u)−

∑n
i=1 ϕ(gi)Zi)

. It is clear that ϕ : R → S induces a ring

homomorphism

ϕ′ :
R[Z1, . . . , Zn]

(u−
∑n
i=1 giZi)

→ S[Z1, . . . , Zn]

(ϕ(u)−
∑n
i=1 ϕ(gi)Zi)

.

Since the image of each system of parameters of R becomes a (partial) system of
parameters of S, we know that each system of parameters is also a Q-sequence in
R[Z1,...,Zn]

(u−
∑n

i=1 giZi)
. This proves that u ∈ I . �

6. Comparison with tight closure in positive characteristic

In this section, we compare robust closure with tight closure in positive charac-
teristic. In particular, we prove the following theorem.

Theorem 6.1. Let (R,m) be a d-dimensional complete local domain of character-
istic p > 0. Let I be an ideal of R, u an element of R, and S a generic forcing
algebra for (R, I, u). Then Hd

m(S) 6= 0 if and only if the image of each system of
parameters for R in S forms a Q-sequence in S.
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Proof. The sufficiency is clear.
Assume that Hd

m(S) 6= 0. From the local cohomology criterion for solid closure
([Hoc94]), we have that u ∈ IF. And by [Hoc94, Theorem 8.6(b)] IF = I∗ under
our hypotheses, hence u is an element of I∗, i.e., for q � 0, we have cuq ∈ I [q] =
(gq1, . . . , g

q
n) where {g1, . . . , gn} is a set of generators of I. We need to prove that the

image of a system of parameters x1, . . . , xd in S = R[Z1,...,Zn]
(u−

∑n
l=1 Zlgl)

forms a Q-sequence

in S. Assume otherwise, then there would exist an integer q0 = pe0 and a short
filtration of S

(x
q0
1 ,...,x

q0
d )

with h < qd0 factors. This short filtration would be given by

s̃1, . . . , s̃h ∈ S (s̃h = 1) satisfying

(x1, . . . , xd)s̃1 ⊆ (xq01 , . . . , x
q0
d )

(x1, . . . , xd)s̃i+1 ⊆ (s̃1, . . . , s̃i) + (xq01 , . . . , x
q0
d ), 1 ≤ i ≤ h− 1

Pick and fix si a lifting of s̃i in R[Z1, . . . , Zn]. Then there would be the following
equations
(6.1.1)

xjsi =

i−1∑
k=1

αijksk +

d∑
k=1

βijkx
q0
k + γij(u−

n∑
l=1

Zlgl), αijk, βijk, γij ∈ R[Z1, . . . , Zn]

where α1jk = 0. Since cuq ∈ I [q] = (gq1, . . . , g
q
n), we have c

1
q u =

∑n
l=1 r

1
q

l gl in R
1
q

for some ri ∈ R. After the substitution Zl = c−
1
q r

1
q

l in each equation appearing in

(6.1.1), we set N to be the least integer such that c
N
q can clear all denominators

appearing in all equations in (6.1.1). Next we define ϕ : R[Z1, . . . , Zn] → R
1
q by

Zl 7→ c−
1
q r

1
q

l and r 7→ r for all r ∈ R. Set σi = ϕ(si)c
iN
q ∈ R

1
q for 1 ≤ i ≤ h. Then

we have the following equations

(6.1.2) xjσi = c
(i−1)N

q ϕ(αij1)σ1 + · · ·+ c
N
q ϕ(αij(i−1))σi−1 + c

iN
q

d∑
k=1

ϕ(βijk)xq0k

Set

τi =


c

hN
q σ i+1

2
, when i odd and i < 2h+ 1

σ i
2
, when i even

1, when i = 2h+ 1

and Mj = R
1
q τ1 + · · · + R

1
q τj + (xq01 , . . . , x

q0
d )R

1
q for j = 1, . . . , 2h + 1, then by

equations in (6.1.2) we have a filtration of R
1
q

(x
q0
1 ,...,x

q0
d )R

1
q

as

0 = M0 ⊆
M1

(xq01 , . . . , x
q0
d )R

1
q

⊆ · · · ⊆ M2h+1

(xq01 , . . . , x
q0
d )R

1
q

=
R

1
q

(xq01 , . . . , x
q0
d )R

1
q

in which
Mj+1

Mj
is killed by (c

hN
q , xq01 , . . . , x

q0
d ) when j is even and it is killed by

(x1, . . . , xd) when j is odd. Consequently, we have

λ(
R

1
q

(xq01 , . . . , x
q0
d )R

1
q

) ≤ hλ(
R

1
q

(x1, . . . , xd)R
1
a

) + λ(
R

1
q

(c
hn
q xq01 , . . . , x

q0
d )R

1
q

)
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which is equivalent to

λ(
R

(xqq01 , . . . , xqq0d )
) ≤ hλ(

R

(xq1, . . . , x
q
d)

) + (h+ 1)λ(

R

(c
hN
q )

(xqq01 , . . . , xqq0d ) R

(c
hN
q )

)

and hence

(6.1.3)
λ( R

(x
qq0
1 ,...,x

qq0
d )

)

(qq0)d
≤ h

λ( R
(xq

1,...,x
q
d)

)

(qq0)d
+ (h+ 1)

λ(

R

(c
hN
q )

(x
qq0
1 ,...,x

qq0
d ) R

(c
hN
q )

)

(qq0)d

Letting q →∞, we have

ex(R) ≤ h

qd0
ex(R) + 0

a contradiction since h < qd0 , where ex(R) denotes the multiplicity of R with respect
to the ideal (x1, . . . , xd) and the limit of the second summand in the right hand
side in (6.1.3) is 0 because dim( R

(c
hN
q )

) < dim(R). This completes the proof. �

The following corollary follows immediately from Theorem 6.1

Corollary 6.2. Let R be a Noetherian ring of characteristic p > 0 and assume
that R has a completely stable test element c, then for all ideals I of R one has

I�j

= I∗ for all j ≥ 1, where Ij is as in Definition 5.13. In particular,

I = I∗

for all ideals I.
Let u be an element of R and I be an ideal of R with a set of generators

{g1, . . . , gn}. Let S = R[Z1,...,Zn]
(u−

∑n
l=1 Zlgl)

be the generic forcing algebra. If one par-

ticular system of parameters for R forms a Q-sequence S, so does every system of
parameters for R.

7. Q-sequences, superheight and Lyubeznik’s question

In this section, we investigate the connections between Q-sequences and super-
height. First we recall the definition of superheight.

Definition 7.1 (superheight). Let R be a Noetherian commutative ring and I an
ideal of R. The superheight of I, denote by supht(I), is defined as

sup{htS(IS)|for all Noetherian R−algebras S}.

Remark 7.2. It follows immediately from [HH09, Theorem 4.7] that, if R contains
a field and supht((x1, . . . , xn)) = n, then x1, . . . , xn form a Q-sequence.

Given Remark 7.2, it is natural to ask:

Question 7.3. Assume that R contains a field and x1, . . . , xn is a Q-sequence. Is
it true that supht((x1, . . . , xn)) = n?

As we will see from the examples in this section, the answer to Question 7.3 is
false. We will give two examples, one in positive characteristic and the other in
characteristic 0.
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Example 7.4 (Brenner-Monsky Example). Let A = F̄2(t)[x,y,z]
(z4+xyz2+x3z+y3z+tx2y2) . As

shown in [BM10, Remark 4.1], the element x3y3 is contained in the tight closure
of (x4, y4, z4), but not in the plus closure of (x4, y4, z4). Since the sequence x, y
is a system of parameters in A, it follows immediately from Theorem 6.1 that the
sequence x, y forms a Q-sequence in the forcing algebra

R =
F̄2(t)[x, y, z, u, v, w]

(z4 + xyz2 + x3z + y3z + tx2y2, x3y3 − ux4 − vy4 − wz4)
.

However, since x3y3 is not in the plus closure of (x4, y4, z4), we claim that the
superheight of (x, y) as an ideal in R is 1 and we reason as follows. Assume that
supht((x, y)) = 2. According to a result by Koh ([Koh87, Fact (1.4)]), since R is a
finite algebra over a field, the finite superheight of (x, y) is also 2, i.e., there exists
a module-finite R-algebra R′ such that ht((x, y)R′) = 2. After localizing R′ at a
height-2 minimal prime over (x, y)R′, we may assume that the dimension of R′ is 2
and x, y is a system of parameters in R′. Since x, y is also a system of parameters
in A, we see that R′ is a module-finite A-algebra. Since x3y3 ∈ (x4, y4, z4) in R
and R′ is an R-algebra, we have x3y3 ∈ (x4, y4, z4) in R′. This implies that x3y3 is
in the plus closure of (x4, y4, z4) in A, a contradiction.

Proposition 7.5. Let R = C[[x, y, z, u, v]]/(x3 + y3 + z3, z2 − ux− vy). Then the
sequence x, y is a Q-sequence, but supht((x, y)) = 1.

Proof. It is clear that R is the forcing algebra of the ring A = C[[x,y,z]]
(x3+y3+z3) , the ideal

I = (x, y) in A and the element z2 in A. Now x, y is a Q-sequence in R follows
from the fact that in A the element z2 belongs to the big equational tight closure
of I (cf. [Hoc94, Example 12.7]).

Assume that supht((x, y)) is 2 and we seek for a contradiction. Let S be a
Noetherian R-algebra in which the height of (x, y)S is 2. After localizing and
completing S at a height-2 prime ideal containing (x, y)S, we may assume that
S is a 2-dimensional complete local ring. Let T = C[[x, y]] be the subring of S
generated by x, y over C. Since x, y is a system of parameter of S, we know that
T is a regular local ring. Still denote the image of z in S by z. Let T ′ = T [z] ⊆ S.
Since z satisfies x3 + y3 + z3 = 0 in R, it still satisfies the equation in S. Hence
there is a surjection A� T ′. Since A is a 2-dimensional domain and the dimension
of T ′ is also 2, we must have A ∼= T ′. Since A is normal, so is T ′. Since in R we
have z2 = ux + vy, the same equation holds in S. This implies that the element
z2 in T ′ is in (x, y)S ∩ T ′. Since T ′ is normal, z2 must be contained in (x, y) in
T ′ ∼= A. However, this is impossible since z2 /∈ (x, y) in A, a contradiction. �

It turns out that Proposition 7.5 can be used to give a negative answer to part
(2) of the following question raised by Gennady Lyubeznik in [Lyu02].

Question 7.6 (page 144 in [Lyu02]). Let (R,m) be a complete local domain with
a separably closed residue field.

(1) Find necessary and sufficient condition on I such that Hj
I (M) = 0 for all

integers j ≥ dim(R)− 1 and all R-modules M .

(2) Let I be a prime ideal. Is it true that Hj
I (M) = 0 for all integers j ≥

dim(R) − 1 and all R-modules M if and only if (P + I) is not primary to
the maximal ideal for any prime ideal P of height 1?
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Proposition 7.7. Let R = C[[x,y,z,u,v]]
(x3+y3+z3,z2−ux−vy) and I = (x, y, z). Then

(1) (P + I) is not primary to the maximal ideal of R for any prime ideal P of
height 1; and

(2) H2
I (R) 6= 0.

In particular, the answer to Question 7.6(2) is negative.

Proof. Since we have proved that the superheight of (x, y) in the ring

R =
C[[x, y, z, u, v]]

(x3 + y3 + z3, z2 − ux− vy)

is 1, it is clear that (x, y, z) +P is not m-primary for any height-1 prime ideal P of
R (otherwise, in the ring R/P , the height of (x, y) would be 2). However, we claim
that H2

(x,y,z)(R) 6= 0. One can either see this from the fact that in A the element

z2 is contained in the solid closure of (x, y), or verify directly that the class [ 1
xy ] is

not 0 in H2
(x,y,z)(R). �

Remark 7.8. Note that, in the ring RI , the ideal IRI is 2-generated; hence R
is not normal by Serre’s criterion (I is a height-1 prime). Or, by the Jacobian
criterion, one can see that the singular locus is actually defined by I and hence
R is not normal. To obtain a counterexample to Question 7.6(2) that is a normal
domain, we consider the normalization R′ of R.

It is straightforward to check that the fraction w = y2+zv
x = −x2−zu

y satisfies the
equation

w3 − xzu+ 2yzv + y3 − u3 + v3 = 0

and hence w is integral over R. Also one can check that R′ = R[w], i.e., R′ =
C[[x, y, z, u, v, w]]/P, where P is the ideal of C[[x, y, z, u, v, w]] generated by the
elements z2 − xu − yv, yw + x2 + zu, xw − y2 − zv, zw2 + xyz + yu2 + xv2, and
w3 − xzu + 2yzv + y3 − u3 + v3. By an argument similar to the one above, we
see that, in R′, we have that I + Q is not primary to the maximal ideal for each
height one prime Q. We claim that H2

I (R′) 6= 0 and we reason as follows. Since
z is contained in the radical of (x, y)R′, we know that Ht

I(M) = Ht
(x,y)(M) for

all integers t and all R′-modules M . It is clear that xw and yw are in R. Thus,

(x, y)R
′

R = 0 since R′ = R[w]. This implies that R′/R is (x, y)-torsion, therefore

Ht
(x,y)(R

′/R) = 0 for all t ≥ 1. In particular, H1
(x,y)(R

′/R) = H2
(x,y)(R

′/R) = 0.

Now the short exact sequence 0→ R→ R′ → R′/R→ 0 induces an exact sequence
of local cohomology modules

· · · → H1
(x,y)(R

′/R)→ H2
(x,y)(R)→ H2

(x,y)(R
′)→ H2

(x,y)(R
′/R)→ · · ·

Therefore, H2
I (R′) = H2

(x,y)(R
′) ∼= H2

(x,y)(R) = H2
I (R) 6= 0.

Remark 7.9. An immediate consequence of [HL90, Theorem 2.5] is the following
Let (R,m) be a d-dimensional equal-characteristic complete local domain with a

separably closed residue field. Let I be a prime ideal of R. Assume that embdim(R)−
mdim(R/I) < d− 1. Then

Hd−1
I (M) = Hd

I (M) = 0

for all R-modules M .
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In Proposition 7.7, R is a 3-dimensional complete intersection where embdim(R)−
mdim(R/I) = 2 = d − 1 and H2

I (R) 6= 0. This indicates that, without further as-
sumptions on R and I, the bound embdim(R)−mdim(R/I) < d− 1 is sharp.

8. Questions, conjectures, and related problems

In this section we have collected some questions and conjectures related to the
behavior of quasilength and content.

Conjecture 8.1. In a complete local domain R of mixed characteristic, every sys-
tem of parameters is a Q-sequence (equivalently, R is robust as an R-algebra).

The conjecture above would give a new proof of the direct summand conjecture
at once (cf. [HH09, Remark 4.8]), but does not follow from it. So far as we know,
it does not follow even from the existence of big Cohen-Macaulay algebras.

Question 8.2. Let R be a complete local domain of mixed characteristic, and
z1, . . . , xd a system of parameters. Is it true that (x1, . . . , xk)R :R xk+1 ⊆(
(x1, . . . , xk)R

)
. That is, does robust closure have the colon-capturing property?

Question 8.3. If R→ S is a local homomorphism of complete local domains and
r ∈ I , where I ⊆ R, is the image of r in S in (IS) ? An affirmative answer gives
a form of persistence for robust closure.

Affirmative answers to these questions would imply the following conjecture,
whose statement does not refer to robust closure.

Conjecture 8.4. Let (R,m) be d-dimensional complete local domain of mixed char-
acteristic p. Assume that p, x2, . . . , xd is a system of parameters. Let R := R/pR.
Let J = (x2, . . . , xd)R, and let Jn = (x2, . . . , xd) :R pn ⊆ R. Then for all n > 0,
JnR ⊆ (JR)∗.

The point is that Jn would be in J , and this would persist when we map to
R/pR. But in R/pR, robust closure coincides with tight closure. We prove below
that Conjecture 8.4 suffices to give a new proof of the direct summand conjecture.
We also prove that it holds in dimension at most 3. This argument in dimension 3
needs very difficult results of Heitmann ([Hei05, Theorem 0.2]).

So far as we know, Conjecture 8.4 does not follow from the direct summand
conjecture.

Theorem 8.5. Conjecture 8.4 implies the Monomial Conjecture (or equivalently
the Direct Summand Conjecture).

Proof. Without loss of generality, we may assume that (R,m) is a complete local
domain of mixed characteristic. Assume the Monomial Conjecture does not hold in
R, i.e. there is a system of parameters p = x1, . . . , xd of R such that (x1 · · ·xd)t−1 ∈
(xt1, . . . , x

t
d) for some integer t ≥ 2 (we may choose x1 = p by [Hoc83, page 539]).

This will imply that there are elements r1, . . . , rd such that

xt−1
1 ((x2 · · ·xd)t−1 − r1x1) =

d∑
i=2

rix
t
i.

Hence (x̄2 · · · x̄d)t−1 ∈ (x̄t2, . . . , x̄
t
d)
∗ in R̄ := R/x1R = R/pR, where x̄i denotes the

image of xi in R̄. And hence, (x̄2 · · · x̄d)t−1 ∈ (x̄t2, . . . , x̄
t
d)
∗ in R/

√
pR. Then by the

colon-capture property of tight closure, we have 1 ∈ (x̄t2, . . . , x̄
t
d)
∗ : (x̄2 · · · x̄d)t−1 ⊆

(x̄2, . . . , x̄d)
∗ ⊆ m, a contradiction. �
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Theorem 8.6. Conjecture 8.4 holds in dimension 3.

Proof. Let (R,m) be a 3-dimensional complete local domain of mixed characteristic.
Let p, x, y be a system of parameters of R and Jn = (x, y) :R pn. it suffices
to show that JnR ⊆ (JR)∗, where R = R/ p, for each minimal prime ideal p
of p. Assume that u ∈ Jn for some n, i.e. upn ∈ (x, y) for some n, then by
[Hei05, Theorem 0.2], for any nonzero element c ∈ m and every q = pe one has
c1/qu ∈ (x, y)R+. This holds true after modding out p, and therefore we have in

R := R/ p that c̄1/qū ∈ (x̄, ȳ)R
+

. Then it follows from [HH91, Theorem 3.1] that
ū ∈ (x̄, ȳ)∗ = (JR)∗. The finishes the proof. �

Question 8.7. Is it always true that hd
x
(R) = hdx(R)? This is true in positive

characteristic as shown in [HH09, Theorem 3.9]. We do not even know whether the

weaker statement that if hd
x
(R) = 0 then hdx(R) = 0 is true.

Question 8.8. Let R be regular of characteristic p > 0, let I be a prime ideal with
x1, . . . , xn a minimal set of generators. If h < n , is it true that hnx(R) = 0?

Question 8.9. Assume that

S1 = R[Y1, . . . , Yn]/(u−
n∑
l=1

Ylgl) and S2 = R[Z1, . . . , Zn]/(v −
n∑
l=1

Zlgl)

satisfy hdx(S1) = hdx(S2) = 1, then do we have

hdx(S1 ⊗R S2) = 1?
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